Physics Reference Tables

Physical Constant	Symbol	Value
Acceleration due to gravity on Earth	g	9.8 m/s/s
Coulomb's law constant	k	$9.0 \times 10^9 \ \frac{Nm^2}{C^2}$
Elementary charge	е	$1.6~\times~10^{_{-19}}~C$
Electron rest mass	m _e	9.11 \times 10 ⁻³¹ kg
Gravitational constant	G	$6.67 \times 10^{-11} \frac{Nm^2}{kg^2}$
Proton rest mass	$m_{_p}$	1.67 \times 10 ⁻²⁷ kg
Speed of light in a vacuum	С	3.00×10^8 m / s
Speed of sound in air at STP		331 m/s

The Index of Refraction for Common Substances				
Air	1.00			
Alcohol	1.36			
Corn Oil	1.47			
Diamond	2.42			
Glass, Crown	1.52			
Glass, Flint	1.61			
Glycerol	1.47			
Quartz, Fused	1.46			
Water	1.33			

Mechanics		Energy	
			F = force
$\overline{v} = \frac{\Delta x}{\Delta t}$ $x_{f} = x_{i} + vt$ $x_{f} = x_{i} + v_{i}t + \frac{1}{2}at^{2}$ $a = \frac{\Delta v}{\Delta t}$ $v_{f}^{2} = v_{i}^{2} + 2a\Delta x$ $F = ma$ $F_{g} = mg$ $F = \frac{Gm_{1}m_{2}}{r^{2}}$ $p = mv$ $J = F\Delta t$ $a_{c} = \frac{v^{2}}{r}$ $F_{c} = \frac{mv^{2}}{r}$	 a = uniform acceleration a_c = centripetal acceleration F = force F_c = centripetal force F_g = weight g = acceleration due to gravity on Earth G = gravitational constant J = impulse m = mass p = momentum r = radius or distance between centers t = time v = velocity 	$W = F\Delta x$ $P = \frac{W}{\Delta t} = F\overline{v}$ $PE_g = mgh$ $KE = \frac{1}{2}mv^2$ $F = -kx$ $PE_s = \frac{1}{2}kx^2$	$F = \text{force}$ $g = \operatorname{acceleration due}_{to gravity on}_{Earth}$ $h = \text{height}$ $k = \operatorname{spring constant}$ $KE = \text{kinetic energy}$ $m = \text{mass}$ $P = \text{power}$ $PE_g = \operatorname{gravitational}_{potential}$ $energy$ $Stored in a \operatorname{spring}$ $t = \text{time}$ $v = \text{velocity}$ $W = \text{work}$ $x = \text{position}$

$F = \frac{kq_1q_2}{2}$	d = distance between parallel plates	Series Circuits	
r²	$E_{\rm e}$ = electrical energy	$I_t = I_1 = I_2 = I_3 = \dots$	
	E = electric field strength	$V_t = V_1 + V_2 + V_3 + \dots$	
V = IR	F = force	$R_{eq} = R_1 + R_2 + R_3 + \dots$	
$P = VI = I^2 R = \frac{V^2}{V}$	<i>I</i> = current		
R	k = Coulomb's law constant	Parallel Circuits	
Ee =Pt	P = power	$I_{1} = I_{1} + I_{2} + I_{3} + \dots$	
	p = transformer primary coil	$V = V = V = V = \dots$	
$E = \frac{F_e}{q} = \frac{kq}{r^2}$	q = charge	$v_t = v_1 = v_2 = v_3 = \dots$	
9 I	r = radius or distance between centers	$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$	
V = kq	R = resistance		
$v = \frac{1}{r}$	<i>s =</i> transformer secondary coil		
$E = \frac{V}{d}$	V = electrical potential or potential difference		

Mathematical Formulas	Wave Pheno	Wave Phenomena	
$a^2 + b^2 = c^2$	$T = \frac{1}{f}$	c = speed of light in a vacuum	
$\theta = \frac{a}{c}$	$v = f\lambda$	f = frequency	
$\frac{b}{b} \cos \theta = \frac{b}{c}$	$n = \frac{c}{v}$	n = index of refraction	
		T = period	
$\tan \theta = \frac{a}{b}$	$n_1 \sin \theta_1 = n_2 \sin \theta_2$	v = speed	
Circumference of a circle = $2\pi r$	$\sin\theta_c = \frac{n_2}{n_1}$	θ = angle	
Area of a rectangle = length \times width		θ_c = critical angle	
Area of a triangle = $\frac{1}{2}$ base × height	$n_1 V_1 = n_2 V_2$	of incidence	
		λ = wavelength	

Electromagnetic Spectrum (measurement in meters)

